Internal
problem
ID
[19958]
Book
:
A
short
course
on
differential
equations.
By
Donald
Francis
Campbell.
Maxmillan
company.
London.
1907
Section
:
Chapter
IV.
Ordinary
linear
differential
equations
with
constant
coefficients.
Exercises
at
page
58
Problem
number
:
10
Date
solved
:
Thursday, October 02, 2025 at 05:04:28 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=diff(diff(diff(y(x),x),x),x)+diff(diff(y(x),x),x)-4*diff(y(x),x)-4*y(x) = x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]+D[y[x],{x,2}]-4D[y[x],x]-4*y[x]==x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x - 4*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)