75.6.5 problem 5

Internal problem ID [19973]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter V. Homogeneous linear differential equations. Exact equations. Exercises at page 69
Problem number : 5
Date solved : Thursday, October 02, 2025 at 05:04:38 PM
CAS classification : [[_3rd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x y^{\prime }-y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 19
ode:=x^3*diff(diff(diff(y(x),x),x),x)+4*x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \,x^{2}+c_3 \ln \left (x \right )+c_2}{x} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 23
ode=x^3*D[y[x],{x,3}]+4*x^2*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_3 x^2+c_2 \log (x)+c_1}{x} \end{align*}
Sympy. Time used: 0.124 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), (x, 3)) + 4*x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + C_{2} x + \frac {C_{3} \log {\left (x \right )}}{x} \]