75.7.4 problem 5

Internal problem ID [19986]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter VI. Certain particular forms of equations. Exercises at page 74
Problem number : 5
Date solved : Thursday, October 02, 2025 at 05:04:48 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y^{\prime \prime }&=\frac {1}{y^{2}} \end{align*}
Maple. Time used: 0.072 (sec). Leaf size: 233
ode:=diff(diff(y(x),x),x) = 1/y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {c_1 \left ({\mathrm e}^{\operatorname {RootOf}\left (-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{2}-2 \textit {\_Z} \,c_1^{3} {\mathrm e}^{\textit {\_Z}}+\operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{4}-2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_2 -2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) x \right )}+2 c_1 +{\mathrm e}^{-\operatorname {RootOf}\left (-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{2}-2 \textit {\_Z} \,c_1^{3} {\mathrm e}^{\textit {\_Z}}+\operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{4}-2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_2 -2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) x \right )} c_1^{2}\right )}{2} \\ y &= \frac {c_1 \left ({\mathrm e}^{\operatorname {RootOf}\left (-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{2}-2 \textit {\_Z} \,c_1^{3} {\mathrm e}^{\textit {\_Z}}+\operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{4}+2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_2 +2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) x \right )}+2 c_1 +{\mathrm e}^{-\operatorname {RootOf}\left (-{\mathrm e}^{2 \textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{2}-2 \textit {\_Z} \,c_1^{3} {\mathrm e}^{\textit {\_Z}}+\operatorname {csgn}\left (\frac {1}{c_1}\right ) c_1^{4}+2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) c_2 +2 \,{\mathrm e}^{\textit {\_Z}} \operatorname {csgn}\left (\frac {1}{c_1}\right ) x \right )} c_1^{2}\right )}{2} \\ \end{align*}
Mathematica. Time used: 0.094 (sec). Leaf size: 62
ode=D[y[x],{x,2}]==1/y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\left (\frac {2 \text {arctanh}\left (\frac {\sqrt {-\frac {2}{y(x)}+c_1}}{\sqrt {c_1}}\right )}{c_1{}^{3/2}}+\frac {y(x) \sqrt {-\frac {2}{y(x)}+c_1}}{c_1}\right ){}^2=(x+c_2){}^2,y(x)\right ] \]
Sympy. Time used: 1.166 (sec). Leaf size: 262
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), (x, 2)) - 1/y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \begin {cases} C_{1} \operatorname {acosh}{\left (\frac {\sqrt {2} \sqrt {C_{1}} \sqrt {y{\left (x \right )}}}{2} \right )} + \frac {y^{\frac {3}{2}}{\left (x \right )}}{\sqrt {C_{1} y{\left (x \right )} - 2}} - \frac {2 \sqrt {y{\left (x \right )}}}{C_{1} \sqrt {C_{1} y{\left (x \right )} - 2}} & \text {for}\: \left |{C_{1} y{\left (x \right )}}\right | > 2 \\- i C_{1} \operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {C_{1}} \sqrt {y{\left (x \right )}}}{2} \right )} - \frac {i y^{\frac {3}{2}}{\left (x \right )}}{\sqrt {- C_{1} y{\left (x \right )} + 2}} + \frac {2 i \sqrt {y{\left (x \right )}}}{C_{1} \sqrt {- C_{1} y{\left (x \right )} + 2}} & \text {otherwise} \end {cases} = C_{1} + x, \ \begin {cases} C_{1} \operatorname {acosh}{\left (\frac {\sqrt {2} \sqrt {C_{1}} \sqrt {y{\left (x \right )}}}{2} \right )} + \frac {y^{\frac {3}{2}}{\left (x \right )}}{\sqrt {C_{1} y{\left (x \right )} - 2}} - \frac {2 \sqrt {y{\left (x \right )}}}{C_{1} \sqrt {C_{1} y{\left (x \right )} - 2}} & \text {for}\: \left |{C_{1} y{\left (x \right )}}\right | > 2 \\- i C_{1} \operatorname {asin}{\left (\frac {\sqrt {2} \sqrt {C_{1}} \sqrt {y{\left (x \right )}}}{2} \right )} - \frac {i y^{\frac {3}{2}}{\left (x \right )}}{\sqrt {- C_{1} y{\left (x \right )} + 2}} + \frac {2 i \sqrt {y{\left (x \right )}}}{C_{1} \sqrt {- C_{1} y{\left (x \right )} + 2}} & \text {otherwise} \end {cases} = C_{1} - x\right ] \]