75.7.8 problem 9

Internal problem ID [19990]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter VI. Certain particular forms of equations. Exercises at page 74
Problem number : 9
Date solved : Thursday, October 02, 2025 at 05:06:12 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} x y^{\prime \prime }+3 y^{\prime }&=3 x \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=x*diff(diff(y(x),x),x)+3*diff(y(x),x) = 3*x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {3 x^{2}}{8}-\frac {c_1}{2 x^{2}}+c_2 \]
Mathematica. Time used: 0.024 (sec). Leaf size: 24
ode=x*D[y[x],{x,2}]+3*D[y[x],x]==3*x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {3 x^2}{8}-\frac {c_1}{2 x^2}+c_2 \end{align*}
Sympy. Time used: 0.136 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) - 3*x + 3*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{2}}{x^{2}} + \frac {3 x^{2}}{8} \]