76.6.5 problem Ex. 5

Internal problem ID [20031]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter II. Equations of the first order and of the first degree. Exercises at page 22
Problem number : Ex. 5
Date solved : Thursday, October 02, 2025 at 05:15:17 PM
CAS classification : [_Bernoulli]

\begin{align*} y \left ({\mathrm e}^{x}+2 y x \right )-{\mathrm e}^{x} y^{\prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 16
ode:=y(x)*(2*x*y(x)+exp(x))-exp(x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{x}}{-x^{2}+c_1} \]
Mathematica. Time used: 0.268 (sec). Leaf size: 25
ode=y[x]*(2*x*y[x]+Exp[x])-Exp[x]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {e^x}{x^2-c_1}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.130 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((2*x*y(x) + exp(x))*y(x) - exp(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {e^{x}}{C_{1} - x^{2}} \]