2.9.15 problem 47

Internal problem ID [859]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.3, second order linear equations. Page 323
Problem number : 47
Date solved : Tuesday, September 30, 2025 at 04:16:15 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }&=\left (-2+2 i \sqrt {3}\right ) y \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 30
ode:=diff(diff(y(x),x),x) = (-2+2*I*3^(1/2))*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{\left (1+i \sqrt {3}\right ) x}+c_2 \,{\mathrm e}^{-\left (1+i \sqrt {3}\right ) x} \]
Mathematica. Time used: 0.014 (sec). Leaf size: 41
ode=D[y[x],{x,2}]==(-2+2*I*Sqrt[3])*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{x+i \sqrt {3} x}+c_2 e^{\left (-1-i \sqrt {3}\right ) x} \end{align*}
Sympy. Time used: 0.096 (sec). Leaf size: 39
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((-sqrt(3)*complex(0, 2) + 2)*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x \sqrt {\sqrt {3} \operatorname {complex}{\left (0,2 \right )} - 2}} + C_{2} e^{x \sqrt {\sqrt {3} \operatorname {complex}{\left (0,2 \right )} - 2}} \]