76.18.24 problem Ex. 26

Internal problem ID [20131]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter III. Equations of the first order but not of the first degree. Examples on chapter III. page 38
Problem number : Ex. 26
Date solved : Thursday, October 02, 2025 at 05:32:28 PM
CAS classification : [[_homogeneous, `class G`], _rational, _Clairaut]

\begin{align*} y&=x y^{\prime }+\frac {m}{y^{\prime }} \end{align*}
Maple. Time used: 0.016 (sec). Leaf size: 35
ode:=y(x) = x*diff(y(x),x)+m/diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -2 \sqrt {m x} \\ y &= 2 \sqrt {m x} \\ y &= \frac {c_1^{2} x +m}{c_1} \\ \end{align*}
Mathematica. Time used: 0.009 (sec). Leaf size: 53
ode=y[x]==D[y[x],x]*x+m/D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {m}{c_1}+c_1 x\\ y(x)&\to \text {Indeterminate}\\ y(x)&\to -2 \sqrt {m} \sqrt {x}\\ y(x)&\to 2 \sqrt {m} \sqrt {x} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
m = symbols("m") 
y = Function("y") 
ode = Eq(-m/Derivative(y(x), x) - x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out