Internal
problem
ID
[20207]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
VI.
Linear
equations
with
constant
coefficients.
Examples
on
chapter
VI,
page
80
Problem
number
:
Ex.
29
Date
solved
:
Thursday, October 02, 2025 at 05:34:40 PM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(y(x),x),x),x)+y(x) = exp(2*x)*sin(x)+exp(1/2*x)*sin(1/2*3^(1/2)*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]+y[x]==Exp[2*x]*Sin[x]+Exp[x/2]*Sin[x*Sqrt[3]/2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) - exp(x/2)*sin(sqrt(3)*x/2) - exp(2*x)*sin(x) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)