Internal
problem
ID
[20219]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
VII.
Linear
equations
with
variable
coefficients.
End
of
chapter
problems
at
page
91
Problem
number
:
Ex.
2
Date
solved
:
Thursday, October 02, 2025 at 05:34:51 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+2*y(x) = exp(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+2*y[x]==Exp[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + 4*x*Derivative(y(x), x) + 2*y(x) - exp(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)