76.49.3 problem Ex. 3

Internal problem ID [20290]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter IX. Equations of the second order. problems at page 111
Problem number : Ex. 3
Date solved : Thursday, October 02, 2025 at 05:41:08 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 30
ode:=(-x+3)*diff(diff(y(x),x),x)-(9-4*x)*diff(y(x),x)+(6-3*x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (c_1 +c_2 \left (4 x^{3}-42 x^{2}+150 x -183\right ) {\mathrm e}^{2 x}\right ) \]
Mathematica. Time used: 0.137 (sec). Leaf size: 42
ode=(3-x)*D[y[x],{x,2}]-(9-4*x)*D[y[x],x]+(6-3*x)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{8} c_2 e^{3 x-9} \left (4 x^3-42 x^2+150 x-183\right )+c_1 e^{x-3} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((3 - x)*Derivative(y(x), (x, 2)) + (6 - 3*x)*y(x) - (9 - 4*x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False