77.2.1 problem 1

Internal problem ID [20332]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Exercise II (A) at page 8
Problem number : 1
Date solved : Thursday, October 02, 2025 at 05:43:44 PM
CAS classification : [_linear]

\begin{align*} x y^{\prime }+x +y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 13
ode:=y(x)+x+x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {x}{2}+\frac {c_1}{x} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 17
ode=(y[x]+x)+x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {x}{2}+\frac {c_1}{x} \end{align*}
Sympy. Time used: 0.093 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + x + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} - \frac {x}{2} \]