Internal
problem
ID
[20353]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
II.
Equations
of
first
order
and
first
degree.
Exercise
II
(B)
at
page
9
Problem
number
:
12
Date
solved
:
Thursday, October 02, 2025 at 05:45:37 PM
CAS
classification
:
[_separable]
ode:=cos(y(x))*ln(sec(x)+tan(x)) = cos(x)*ln(sec(y(x))+tan(y(x)))*diff(y(x),x); dsolve(ode,y(x), singsol=all);
ode=Cos[y[x]]*Log[ Sec[x]+Tan[x] ]==Cos[x]*Log[Sec[y[x]]+Tan[y[x]]]*D[y[x],x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(log(tan(x) + 1/cos(x))*cos(y(x)) - log(tan(y(x)) + 1/cos(y(x)))*cos(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)