2.11.16 problem 31

Internal problem ID [884]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number : 31
Date solved : Tuesday, September 30, 2025 at 04:19:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+4 y&=2 x \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ y^{\prime }\left (0\right )&=2 \\ \end{align*}
Maple. Time used: 0.046 (sec). Leaf size: 18
ode:=diff(diff(y(x),x),x)+4*y(x) = 2*x; 
ic:=[y(0) = 1, D(y)(0) = 2]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {3 \sin \left (2 x \right )}{4}+\cos \left (2 x \right )+\frac {x}{2} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 22
ode=D[y[x],{x,2}]+4*y[x]==2*x; 
ic={y[0]==1,Derivative[1][y][0] ==2}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \cos (2 x)+\frac {1}{2} (x+3 \sin (x) \cos (x)) \end{align*}
Sympy. Time used: 0.045 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x + 4*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 2} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x}{2} + \frac {3 \sin {\left (2 x \right )}}{4} + \cos {\left (2 x \right )} \]