77.4.16 problem 16

Internal problem ID [20373]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Exercise II (C) at page 12
Problem number : 16
Date solved : Thursday, October 02, 2025 at 05:48:33 PM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (x -3 y+4\right ) y^{\prime }+7 y-5 x&=0 \end{align*}
Maple. Time used: 1.862 (sec). Leaf size: 30
ode:=(x-3*y(x)+4)*diff(y(x),x)+7*y(x)-5*x = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-1-\sqrt {1+\left (-48 x +168\right ) c_1}+60 \left (-2+x \right ) c_1}{36 c_1} \]
Mathematica. Time used: 60.071 (sec). Leaf size: 1339
ode=(x-3*y[x]+4)*D[y[x],x]+(7*y[x]-5*x)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}
Sympy. Time used: 1.915 (sec). Leaf size: 68
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-5*x + (x - 3*y(x) + 4)*Derivative(y(x), x) + 7*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {C_{1}}{2} + \frac {5 x}{3} - \frac {\sqrt {3} \sqrt {C_{1} \left (3 C_{1} + 8 x - 28\right )}}{6} - \frac {10}{3}, \ y{\left (x \right )} = \frac {C_{1}}{2} + \frac {5 x}{3} + \frac {\sqrt {3} \sqrt {C_{1} \left (3 C_{1} + 8 x - 28\right )}}{6} - \frac {10}{3}\right ] \]