77.5.6 problem 6

Internal problem ID [20386]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Exercise II (D) at page 16
Problem number : 6
Date solved : Thursday, October 02, 2025 at 05:49:46 PM
CAS classification : [_linear]

\begin{align*} \cos \left (x \right ) \sin \left (x \right ) y^{\prime }&=\sin \left (x \right )+y \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 26
ode:=sin(x)*cos(x)*diff(y(x),x) = y(x)+sin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (\ln \left (\csc \left (x \right )+\cot \left (x \right )\right )-c_1 \right ) \left (-\csc \left (2 x \right )+\cot \left (2 x \right )\right ) \]
Mathematica. Time used: 0.02 (sec). Leaf size: 16
ode=Sin[x]*Cos[x]*D[y[x],x]==y[x]+Sin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \tan (x) (-\text {arctanh}(\cos (x))+c_1) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + sin(x)*cos(x)*Derivative(y(x), x) - sin(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out