2.11.20 problem 35

Internal problem ID [888]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number : 35
Date solved : Tuesday, September 30, 2025 at 04:19:04 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=x +1 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=3 \\ y^{\prime }\left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.061 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+2*y(x) = 1+x; 
ic:=[y(0) = 3, D(y)(0) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {\left (-5 \sin \left (x \right )+4 \cos \left (x \right )\right ) {\mathrm e}^{x}}{2}+\frac {x}{2}+1 \]
Mathematica. Time used: 0.01 (sec). Leaf size: 26
ode=D[y[x],{x,2}]-2*D[y[x],x]+2*y[x]==x+1; 
ic={y[0]==3,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} \left (x-5 e^x \sin (x)+4 e^x \cos (x)+2\right ) \end{align*}
Sympy. Time used: 0.151 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + 2*y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 1,0) 
ics = {y(0): 3, Subs(Derivative(y(x), x), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x}{2} + \left (- \frac {5 \sin {\left (x \right )}}{2} + 2 \cos {\left (x \right )}\right ) e^{x} + 1 \]