77.5.20 problem 20

Internal problem ID [20400]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Exercise II (D) at page 16
Problem number : 20
Date solved : Thursday, October 02, 2025 at 05:52:31 PM
CAS classification : [_Bernoulli]

\begin{align*} 2 y^{\prime }-y \sec \left (x \right )&=y^{3} \tan \left (x \right ) \end{align*}
Maple. Time used: 0.089 (sec). Leaf size: 78
ode:=2*diff(y(x),x)-y(x)*sec(x) = y(x)^3*tan(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {-\cos \left (x \right ) \left (\cos \left (x \right )+\left (\sin \left (x \right )-1\right ) \left (c_1 +x \right )\right )}}{\left (c_1 +x \right ) \sin \left (x \right )+\cos \left (x \right )-c_1 -x} \\ y &= -\frac {\sqrt {-\cos \left (x \right ) \left (\cos \left (x \right )+\left (\sin \left (x \right )-1\right ) \left (c_1 +x \right )\right )}}{\left (c_1 +x \right ) \sin \left (x \right )+\cos \left (x \right )-c_1 -x} \\ \end{align*}
Mathematica. Time used: 0.604 (sec). Leaf size: 136
ode=2*D[y[x],x]-y[x]*Sec[x]==y[x]^3*Tan[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {i e^{\text {arctanh}\left (\tan \left (\frac {x}{2}\right )\right )} \sqrt {\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )}}{\sqrt {(x+2+c_1) \sin \left (\frac {x}{2}\right )-(x+c_1) \cos \left (\frac {x}{2}\right )}}\\ y(x)&\to \frac {i e^{\text {arctanh}\left (\tan \left (\frac {x}{2}\right )\right )} \sqrt {\cos \left (\frac {x}{2}\right )-\sin \left (\frac {x}{2}\right )}}{\sqrt {(x+2+c_1) \sin \left (\frac {x}{2}\right )-(x+c_1) \cos \left (\frac {x}{2}\right )}}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 14.862 (sec). Leaf size: 94
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**3*tan(x) - y(x)/cos(x) + 2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {\frac {\sqrt {\sin {\left (x \right )} + 1}}{\left (C_{1} - \int \frac {\sqrt {\sin {\left (x \right )} + 1} \tan {\left (x \right )}}{\sqrt {\sin {\left (x \right )} - 1}}\, dx\right ) \sqrt {\sin {\left (x \right )} - 1}}}, \ y{\left (x \right )} = \sqrt {\frac {\sqrt {\sin {\left (x \right )} + 1}}{\left (C_{1} - \int \frac {\sqrt {\sin {\left (x \right )} + 1} \tan {\left (x \right )}}{\sqrt {\sin {\left (x \right )} - 1}}\, dx\right ) \sqrt {\sin {\left (x \right )} - 1}}}\right ] \]