Internal
problem
ID
[20412]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
II.
Equations
of
first
order
and
first
degree.
Misc
examples
on
chapter
II
at
page
25
Problem
number
:
1
Date
solved
:
Sunday, October 12, 2025 at 05:37:45 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=(x+y(x)*diff(y(x),x))/(-y(x)+x*diff(y(x),x)) = ((a^2-x^2-y(x)^2)/(x^2+y(x)^2))^(1/2); dsolve(ode,y(x), singsol=all);
ode=(x+y[x]*D[y[x],x])/(x*D[y[x],x]-y[x])==Sqrt[ (a^2-x^2-y[x]^2)/(x^2+y[x]^2) ]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-sqrt((a**2 - x**2 - y(x)**2)/(x**2 + y(x)**2)) + (x + y(x)*Derivative(y(x), x))/(x*Derivative(y(x), x) - y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out