77.8.15 problem 16

Internal problem ID [20426]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter II. Equations of first order and first degree. Misc examples on chapter II at page 25
Problem number : 16
Date solved : Thursday, October 02, 2025 at 05:58:37 PM
CAS classification : [_Bernoulli]

\begin{align*} y y^{\prime }+b y^{2}&=a \cos \left (x \right ) \end{align*}
Maple. Time used: 0.010 (sec). Leaf size: 98
ode:=y(x)*diff(y(x),x)+b*y(x)^2 = a*cos(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {16 c_1 \left (b^{2}+\frac {1}{4}\right )^{2} {\mathrm e}^{-2 b x}+16 \left (\cos \left (x \right ) b +\frac {\sin \left (x \right )}{2}\right ) a \left (b^{2}+\frac {1}{4}\right )}}{4 b^{2}+1} \\ y &= -\frac {\sqrt {16 c_1 \left (b^{2}+\frac {1}{4}\right )^{2} {\mathrm e}^{-2 b x}+16 \left (\cos \left (x \right ) b +\frac {\sin \left (x \right )}{2}\right ) a \left (b^{2}+\frac {1}{4}\right )}}{4 b^{2}+1} \\ \end{align*}
Mathematica. Time used: 5.306 (sec). Leaf size: 112
ode=y[x]*D[y[x],x]+b*y[x]^2==a*Cos[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {\sqrt {4 a b \cos (x)+e^{-2 b x} \left (2 a e^{2 b x} \sin (x)+4 b^2 c_1+c_1\right )}}{\sqrt {4 b^2+1}}\\ y(x)&\to \frac {\sqrt {4 a b \cos (x)+e^{-2 b x} \left (2 a e^{2 b x} \sin (x)+4 b^2 c_1+c_1\right )}}{\sqrt {4 b^2+1}} \end{align*}
Sympy. Time used: 29.270 (sec). Leaf size: 508
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(-a*cos(x) + b*y(x)**2 + y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \begin {cases} - \sqrt {C_{1} e^{- 2 b x} + i a x e^{- 2 b x - i x} \sin {\left (x \right )} + a x e^{- 2 b x - i x} \cos {\left (x \right )} + a e^{- 2 b x - i x} \sin {\left (x \right )}} & \text {for}\: b = - \frac {i}{2} \\- \sqrt {C_{1} e^{- 2 b x} - i a x e^{- 2 b x + i x} \sin {\left (x \right )} + a x e^{- 2 b x + i x} \cos {\left (x \right )} + a e^{- 2 b x + i x} \sin {\left (x \right )}} & \text {for}\: b = \frac {i}{2} \\- \sqrt {\frac {4 C_{1} b^{2}}{4 b^{2} e^{2 b x} + e^{2 b x}} + \frac {C_{1}}{4 b^{2} e^{2 b x} + e^{2 b x}} + \frac {4 a b e^{2 b x} \cos {\left (x \right )}}{4 b^{2} e^{2 b x} + e^{2 b x}} + \frac {2 a e^{2 b x} \sin {\left (x \right )}}{4 b^{2} e^{2 b x} + e^{2 b x}}} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} \sqrt {C_{1} e^{- 2 b x} + i a x e^{- 2 b x - i x} \sin {\left (x \right )} + a x e^{- 2 b x - i x} \cos {\left (x \right )} + a e^{- 2 b x - i x} \sin {\left (x \right )}} & \text {for}\: b = - \frac {i}{2} \\\sqrt {C_{1} e^{- 2 b x} - i a x e^{- 2 b x + i x} \sin {\left (x \right )} + a x e^{- 2 b x + i x} \cos {\left (x \right )} + a e^{- 2 b x + i x} \sin {\left (x \right )}} & \text {for}\: b = \frac {i}{2} \\\sqrt {\frac {4 C_{1} b^{2}}{4 b^{2} e^{2 b x} + e^{2 b x}} + \frac {C_{1}}{4 b^{2} e^{2 b x} + e^{2 b x}} + \frac {4 a b e^{2 b x} \cos {\left (x \right )}}{4 b^{2} e^{2 b x} + e^{2 b x}} + \frac {2 a e^{2 b x} \sin {\left (x \right )}}{4 b^{2} e^{2 b x} + e^{2 b x}}} & \text {otherwise} \end {cases}\right ] \]