77.9.4 problem 4

Internal problem ID [20447]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter III. Ordinary linear differential equations with constant coefficients. Exercise III(A) at page 31
Problem number : 4
Date solved : Thursday, October 02, 2025 at 06:02:59 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+3 y^{\prime }-54 y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)+3*diff(y(x),x)-54*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_2 \,{\mathrm e}^{15 x}+c_1 \right ) {\mathrm e}^{-9 x} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 22
ode=D[y[x],{x,2}]+3*D[y[x],x]-54*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{-9 x}+c_2 e^{6 x} \end{align*}
Sympy. Time used: 0.090 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-54*y(x) + 3*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 9 x} + C_{2} e^{6 x} \]