77.10.4 problem 4

Internal problem ID [20452]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter III. Ordinary linear differential equations with constant coefficients. Exercise III (B) at page 32
Problem number : 4
Date solved : Thursday, October 02, 2025 at 06:03:01 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 23
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-2*diff(diff(y(x),x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-x} \left (c_2 x +c_1 \right )+{\mathrm e}^{x} \left (c_4 x +c_3 \right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 35
ode=D[y[x],{x,4}]-2*D[y[x],{x,2}]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x} \left (c_3 e^{2 x}+x \left (c_4 e^{2 x}+c_2\right )+c_1\right ) \end{align*}
Sympy. Time used: 0.041 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{- x} + \left (C_{3} + C_{4} x\right ) e^{x} \]