2.11.27 problem 50

Internal problem ID [895]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.5, Nonhomogeneous equations and undetermined coefficients Page 351
Problem number : 50
Date solved : Tuesday, September 30, 2025 at 04:19:11 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-4 y&=\sinh \left (2 x \right ) \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 26
ode:=diff(diff(y(x),x),x)-4*y(x) = sinh(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (\left (x +8 c_2 -\frac {1}{4}\right ) {\mathrm e}^{4 x}+x +8 c_1 \right ) {\mathrm e}^{-2 x}}{8} \]
Mathematica. Time used: 0.021 (sec). Leaf size: 38
ode=D[y[x],{x,2}]-4*y[x]==Sinh[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{32} e^{-2 x} \left (4 x+e^{4 x} (4 x-1+32 c_1)+1+32 c_2\right ) \end{align*}
Sympy. Time used: 0.079 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*y(x) - sinh(2*x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 2 x} + C_{2} e^{2 x} + \frac {x \cosh {\left (2 x \right )}}{4} \]