77.17.9 problem 9

Internal problem ID [20490]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter III. Ordinary linear differential equations with constant coefficients. Misc. Examples on chapter III at page 50
Problem number : 9
Date solved : Thursday, October 02, 2025 at 06:03:29 PM
CAS classification : [[_high_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y&=16 x^{2}+256 \end{align*}
Maple. Time used: 0.009 (sec). Leaf size: 57
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+diff(diff(y(x),x),x)+16*y(x) = 16*x^2+256; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (8 c_1 \cos \left (\frac {3 x}{2}\right )+8 c_2 \sin \left (\frac {3 x}{2}\right )\right ) {\mathrm e}^{-\frac {\sqrt {7}\, x}{2}}}{8}+\frac {\left (8 c_3 \cos \left (\frac {3 x}{2}\right )+8 c_4 \sin \left (\frac {3 x}{2}\right )\right ) {\mathrm e}^{\frac {\sqrt {7}\, x}{2}}}{8}+x^{2}+\frac {127}{8} \]
Mathematica. Time used: 0.005 (sec). Leaf size: 132
ode=D[y[x],{x,4}]+D[y[x],{x,2}]+16*y[x]==16*x^2+256; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-2 x \sin \left (\frac {1}{2} \arctan \left (3 \sqrt {7}\right )\right )} \cos \left (2 x \cos \left (\frac {1}{2} \arctan \left (3 \sqrt {7}\right )\right )\right ) \left (c_3 e^{4 x \sin \left (\frac {1}{2} \arctan \left (3 \sqrt {7}\right )\right )}+c_2\right )+e^{-2 x \sin \left (\frac {1}{2} \arctan \left (3 \sqrt {7}\right )\right )} \left (c_1 e^{4 x \sin \left (\frac {1}{2} \arctan \left (3 \sqrt {7}\right )\right )}+c_4\right ) \sin \left (2 x \cos \left (\frac {1}{2} \arctan \left (3 \sqrt {7}\right )\right )\right )+x^2+\frac {127}{8} \end{align*}
Sympy. Time used: 0.159 (sec). Leaf size: 117
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-16*x**2 + 16*y(x) + Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)) - 256,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{2} + \left (C_{1} \sin {\left (2 x \cos {\left (\frac {\operatorname {atan}{\left (3 \sqrt {7} \right )}}{2} \right )} \right )} + C_{2} \cos {\left (2 x \cos {\left (\frac {\operatorname {atan}{\left (3 \sqrt {7} \right )}}{2} \right )} \right )}\right ) e^{- 2 x \sin {\left (\frac {\operatorname {atan}{\left (3 \sqrt {7} \right )}}{2} \right )}} + \left (C_{3} \sin {\left (2 x \cos {\left (\frac {\operatorname {atan}{\left (3 \sqrt {7} \right )}}{2} \right )} \right )} + C_{4} \cos {\left (2 x \cos {\left (\frac {\operatorname {atan}{\left (3 \sqrt {7} \right )}}{2} \right )} \right )}\right ) e^{2 x \sin {\left (\frac {\operatorname {atan}{\left (3 \sqrt {7} \right )}}{2} \right )}} + \frac {127}{8} \]