77.26.14 problem 14

Internal problem ID [20623]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VI. Homogeneous linear equations with variable coefficients. Exercise VI (C) at page 93
Problem number : 14
Date solved : Thursday, October 02, 2025 at 06:16:21 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+2 x y^{\prime }-20 y&=\left (1+x \right )^{2} \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 24
ode:=x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-20*y(x) = (1+x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_2 \,x^{4}+\frac {c_1}{x^{5}}-\frac {x^{2}}{14}-\frac {x}{9}-\frac {1}{20} \]
Mathematica. Time used: 0.014 (sec). Leaf size: 33
ode=x^2*D[y[x],{x,2}]+2*x*D[y[x],x]-20*y[x]==(1+x)^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1}{x^5}+c_2 x^4-\frac {x^2}{14}-\frac {x}{9}-\frac {1}{20} \end{align*}
Sympy. Time used: 0.175 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + 2*x*Derivative(y(x), x) - (x + 1)**2 - 20*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x^{5}} + C_{2} x^{4} - \frac {x^{2}}{14} - \frac {x}{9} - \frac {1}{20} \]