Internal
problem
ID
[20625]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Chapter
VI.
Homogeneous
linear
equations
with
variable
coefficients.
Exercise
VI
(C)
at
page
93
Problem
number
:
16
Date
solved
:
Thursday, October 02, 2025 at 06:16:23 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+2*x^3*diff(diff(diff(y(x),x),x),x)+x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = x+ln(x); dsolve(ode,y(x), singsol=all);
ode=x^4*D[y[x],{x,4}]+2*x^3*D[y[x],{x,3}]+x^2*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==x+Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 4)) + 2*x**3*Derivative(y(x), (x, 3)) + x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) - x + y(x) - log(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)