Internal
problem
ID
[912]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
5.6,
Forced
Oscillations
and
Resonance.
Page
362
Problem
number
:
5
Date
solved
:
Tuesday, September 30, 2025 at 04:19:29 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=m*diff(diff(x(t),t),t)+k*x(t) = F__0*cos(omega*t); dsolve(ode,x(t), singsol=all);
ode=m*D[x[t],{t,2}]+k*x[t]==F0*Cos[omega*t]; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") F__0 = symbols("F__0") k = symbols("k") m = symbols("m") omega = symbols("omega") x = Function("x") ode = Eq(-F__0*cos(omega*t) + k*x(t) + m*Derivative(x(t), (t, 2)),0) ics = {} dsolve(ode,func=x(t),ics=ics)