Internal
problem
ID
[914]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
5.6,
Forced
Oscillations
and
Resonance.
Page
362
Problem
number
:
8
Date
solved
:
Tuesday, September 30, 2025 at 04:19:30 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(x(t),t),t)+3*diff(x(t),t)+5*x(t) = -4*cos(5*t); dsolve(ode,x(t), singsol=all);
ode=D[x[t],{t,2}]+3*D[x[t],t]+5*x[t]==-4*Cos[5*t]; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(5*x(t) + 4*cos(5*t) + 3*Derivative(x(t), t) + Derivative(x(t), (t, 2)),0) ics = {} dsolve(ode,func=x(t),ics=ics)