77.29.3 problem 3

Internal problem ID [20661]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VII. Exact differential equations and certain particular forms of equations. Exercise VII (C) at page 107
Problem number : 3
Date solved : Thursday, October 02, 2025 at 06:18:05 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} -a^{2} y+y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 18
ode:=diff(diff(y(x),x),x)-a^2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-a x}+c_2 \,{\mathrm e}^{a x} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 23
ode=D[y[x],{x,2}]-a^2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{a x}+c_2 e^{-a x} \end{align*}
Sympy. Time used: 0.045 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a**2*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- a x} + C_{2} e^{a x} \]