77.30.3 problem 3

Internal problem ID [20667]
Book : A Text book for differentional equations for postgraduate students by Ray and Chaturvedi. First edition, 1958. BHASKAR press. INDIA
Section : Chapter VII. Exact differential equations and certain particular forms of equations. Exercise VII (D) at page 109
Problem number : 3
Date solved : Thursday, October 02, 2025 at 06:18:14 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} y^{\prime \prime }+y^{\prime }&={\mathrm e}^{x} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=diff(y(x),x)+diff(diff(y(x),x),x) = exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{x}}{2}-{\mathrm e}^{-x} c_1 +c_2 \]
Mathematica. Time used: 0.027 (sec). Leaf size: 24
ode=D[y[x],{x,2}]+D[y[x],x]==Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^x}{2}+c_1 \left (-e^{-x}\right )+c_2 \end{align*}
Sympy. Time used: 0.082 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-exp(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{- x} + \frac {e^{x}}{2} \]