2.12.10 problem 11

Internal problem ID [917]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.6, Forced Oscillations and Resonance. Page 362
Problem number : 11
Date solved : Tuesday, September 30, 2025 at 04:19:33 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} x^{\prime \prime }+4 x^{\prime }+5 x&=10 \cos \left (3 t \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=0 \\ x^{\prime }\left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.035 (sec). Leaf size: 30
ode:=diff(diff(x(t),t),t)+4*diff(x(t),t)+5*x(t) = 10*cos(3*t); 
ic:=[x(0) = 0, D(x)(0) = 0]; 
dsolve([ode,op(ic)],x(t), singsol=all);
 
\[ x = \frac {\left (\cos \left (t \right )-7 \sin \left (t \right )\right ) {\mathrm e}^{-2 t}}{4}-\frac {\cos \left (3 t \right )}{4}+\frac {3 \sin \left (3 t \right )}{4} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 43
ode=D[x[t],{t,2}]+4*D[x[t],t]+5*x[t]==10*Cos[3*t]; 
ic={x[0]==0,Derivative[1][x][0 ]==0}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \frac {1}{4} e^{-2 t} \left (-7 \sin (t)+3 e^{2 t} \sin (3 t)+\cos (t)-e^{2 t} \cos (3 t)\right ) \end{align*}
Sympy. Time used: 0.166 (sec). Leaf size: 34
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(5*x(t) - 10*cos(3*t) + 4*Derivative(x(t), t) + Derivative(x(t), (t, 2)),0) 
ics = {x(0): 0, Subs(Derivative(x(t), t), t, 0): 0} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = \left (- \frac {7 \sin {\left (t \right )}}{4} + \frac {\cos {\left (t \right )}}{4}\right ) e^{- 2 t} + \frac {3 \sin {\left (3 t \right )}}{4} - \frac {\cos {\left (3 t \right )}}{4} \]