78.1.24 problem 14.a

Internal problem ID [20950]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS FOR SCIENTISTS AND ENGINEERS. By Russell Herman. University of North Carolina Wilmington. LibreText. compiled on 06/09/2025
Section : Chapter 1, First order ODEs. Problems section 1.5
Problem number : 14.a
Date solved : Thursday, October 02, 2025 at 07:00:23 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x^{2}-y x +y^{2}-x y y^{\prime }&=0 \end{align*}
Maple. Time used: 0.009 (sec). Leaf size: 19
ode:=x^2-x*y(x)+y(x)^2-x*y(x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \left (\operatorname {LambertW}\left (\frac {{\mathrm e}^{-c_1 -1}}{x}\right )+1\right ) \]
Mathematica. Time used: 1.125 (sec). Leaf size: 25
ode=(x^2-x*y[x]+y[x]^2)-x*y[x]*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x \left (1+W\left (\frac {e^{-1+c_1}}{x}\right )\right )\\ y(x)&\to x \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2 - x*y(x)*Derivative(y(x), x) - x*y(x) + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded