78.2.5 problem 2.a

Internal problem ID [20957]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS FOR SCIENTISTS AND ENGINEERS. By Russell Herman. University of North Carolina Wilmington. LibreText. compiled on 06/09/2025
Section : Chapter 2, Second order ODEs. Problems section 2.6
Problem number : 2.a
Date solved : Thursday, October 02, 2025 at 07:00:40 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 15
ode:=x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)-4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_2 \,x^{5}+c_1}{x} \]
Mathematica. Time used: 0.008 (sec). Leaf size: 18
ode=x^2*D[y[x],{x,2}]-2*x*D[y[x],x]-4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_2 x^5+c_1}{x} \end{align*}
Sympy. Time used: 0.088 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x) - 4*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + C_{2} x^{4} \]