Internal
problem
ID
[20962]
Book
:
A
FIRST
COURSE
IN
DIFFERENTIAL
EQUATIONS
FOR
SCIENTISTS
AND
ENGINEERS.
By
Russell
Herman.
University
of
North
Carolina
Wilmington.
LibreText.
compiled
on
06/09/2025
Section
:
Chapter
2,
Second
order
ODEs.
Problems
section
2.6
Problem
number
:
4
Date
solved
:
Thursday, October 02, 2025 at 07:00:44 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(x(t),t),t)-3*diff(x(t),t)+2*x(t) = 6*exp(3*t); dsolve(ode,x(t), singsol=all);
ode=D[x[t],{t,2}]-3*D[x[t],t]+2*x[t]==6*Exp[3*t]; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(2*x(t) - 6*exp(3*t) - 3*Derivative(x(t), t) + Derivative(x(t), (t, 2)),0) ics = {} dsolve(ode,func=x(t),ics=ics)