78.2.19 problem 6.b

Internal problem ID [20971]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS FOR SCIENTISTS AND ENGINEERS. By Russell Herman. University of North Carolina Wilmington. LibreText. compiled on 06/09/2025
Section : Chapter 2, Second order ODEs. Problems section 2.6
Problem number : 6.b
Date solved : Thursday, October 02, 2025 at 07:00:50 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&=6 x \,{\mathrm e}^{2 x} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+4*y(x) = 6*x*exp(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{2 x} \left (x^{3}+c_1 x +c_2 \right ) \]
Mathematica. Time used: 0.015 (sec). Leaf size: 21
ode=D[y[x],{x,2}]-4*D[y[x],x]+4*y[x]==6*x*Exp[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{2 x} \left (x^3+c_2 x+c_1\right ) \end{align*}
Sympy. Time used: 0.144 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*x*exp(2*x) + 4*y(x) - 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + x^{2}\right )\right ) e^{2 x} \]