Internal
problem
ID
[20983]
Book
:
A
FIRST
COURSE
IN
DIFFERENTIAL
EQUATIONS
FOR
SCIENTISTS
AND
ENGINEERS.
By
Russell
Herman.
University
of
North
Carolina
Wilmington.
LibreText.
compiled
on
06/09/2025
Section
:
Chapter
2,
Second
order
ODEs.
Problems
section
2.6
Problem
number
:
10.a
Date
solved
:
Thursday, October 02, 2025 at 07:01:00 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+3*x*diff(y(x),x)-3*y(x) = 3*x^2; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+3*x*D[y[x],x]-3*y[x]==3*x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 3*x**2 + 3*x*Derivative(y(x), x) - 3*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)