78.2.43 problem 17.c

Internal problem ID [20995]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS FOR SCIENTISTS AND ENGINEERS. By Russell Herman. University of North Carolina Wilmington. LibreText. compiled on 06/09/2025
Section : Chapter 2, Second order ODEs. Problems section 2.6
Problem number : 17.c
Date solved : Thursday, October 02, 2025 at 07:01:14 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-4 y&={\mathrm e}^{2 x} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.033 (sec). Leaf size: 18
ode:=diff(diff(y(x),x),x)-4*y(x) = exp(2*x); 
ic:=[y(0) = 0, D(y)(0) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {x \,{\mathrm e}^{2 x}}{4}+\frac {3 \sinh \left (2 x \right )}{8} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 27
ode=D[y[x],{x,2}]-4*y[x]==Exp[2*x]; 
ic={y[0]==0,Derivative[1][y][0] ==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{16} e^{-2 x} \left (e^{4 x} (4 x+3)-3\right ) \end{align*}
Sympy. Time used: 0.082 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*y(x) - exp(2*x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (\frac {x}{4} + \frac {3}{16}\right ) e^{2 x} - \frac {3 e^{- 2 x}}{16} \]