Internal
problem
ID
[21007]
Book
:
A
FIRST
COURSE
IN
DIFFERENTIAL
EQUATIONS
FOR
SCIENTISTS
AND
ENGINEERS.
By
Russell
Herman.
University
of
North
Carolina
Wilmington.
LibreText.
compiled
on
06/09/2025
Section
:
Chapter
4,
Series
solutions.
Problems
section
4.9
Problem
number
:
2.f
Date
solved
:
Friday, October 03, 2025 at 07:49:22 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=5; ode:=x*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = exp(x); ic:=[y(0) = 1, D(y)(0) = 2]; dsolve([ode,op(ic)],y(x),type='series',x=0);
ode=x*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==Exp[x]; ic={y[0]==1,Derivative[1][y][0] ==2}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,4}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*Derivative(y(x), x) + x*Derivative(y(x), (x, 2)) + y(x) - exp(x),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 2} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
ValueError : ODE -x*Derivative(y(x), x) + x*Derivative(y(x), (x, 2)) + y(x) - exp(x) does not match hint 2nd_power_series_regular