78.3.13 problem 3

Internal problem ID [21009]
Book : A FIRST COURSE IN DIFFERENTIAL EQUATIONS FOR SCIENTISTS AND ENGINEERS. By Russell Herman. University of North Carolina Wilmington. LibreText. compiled on 06/09/2025
Section : Chapter 4, Series solutions. Problems section 4.9
Problem number : 3
Date solved : Thursday, October 02, 2025 at 07:01:22 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} y^{\prime \prime }-x y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.006 (sec). Leaf size: 39
Order:=6; 
ode:=diff(diff(y(x),x),x)-x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {1}{2} x^{2}+\frac {1}{8} x^{4}\right ) y \left (0\right )+\left (x +\frac {1}{3} x^{3}+\frac {1}{15} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 42
ode=D[y[x],{x,2}]-x*D[y[x],x]-y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (\frac {x^5}{15}+\frac {x^3}{3}+x\right )+c_1 \left (\frac {x^4}{8}+\frac {x^2}{2}+1\right ) \]
Sympy. Time used: 0.198 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) - y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{4}}{8} + \frac {x^{2}}{2} + 1\right ) + C_{1} x \left (\frac {x^{2}}{3} + 1\right ) + O\left (x^{6}\right ) \]