Internal
problem
ID
[21016]
Book
:
A
FIRST
COURSE
IN
DIFFERENTIAL
EQUATIONS
FOR
SCIENTISTS
AND
ENGINEERS.
By
Russell
Herman.
University
of
North
Carolina
Wilmington.
LibreText.
compiled
on
06/09/2025
Section
:
Chapter
4,
Series
solutions.
Problems
section
4.9
Problem
number
:
5.d
Date
solved
:
Thursday, October 02, 2025 at 07:01:27 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*(x-2)*diff(diff(y(x),x),x)+4*(x-2)*diff(y(x),x)+3*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*(x-2)*D[y[x],{x,2}]+4*(x-2)*D[y[x],x]+3*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*(x - 2)*Derivative(y(x), (x, 2)) + (4*x - 8)*Derivative(y(x), x) + 3*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
ValueError : ODE x**2*(x - 2)*Derivative(y(x), (x, 2)) + (4*x - 8)*Derivative(y(x), x) + 3*y(x) does not match hint 2nd_power_series_regular