Internal
problem
ID
[21038]
Book
:
A
FIRST
COURSE
IN
DIFFERENTIAL
EQUATIONS
FOR
SCIENTISTS
AND
ENGINEERS.
By
Russell
Herman.
University
of
North
Carolina
Wilmington.
LibreText.
compiled
on
06/09/2025
Section
:
Chapter
5,
Laplace
transforms.
Problems
section
5.7
Problem
number
:
12.b
Date
solved
:
Thursday, October 02, 2025 at 07:01:40 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = -4*x(t)-y(t)+exp(-t), diff(y(t),t) = x(t)-2*y(t)+2*exp(-3*t)]; ic:=[x(0) = 2, y(0) = -1]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==-4*x[t]-y[t]+Exp[-t],D[y[t],t]==x[t]-2*y[t]+2*Exp[-3*t]}; ic={x[0]==2,y[0]==-1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(4*x(t) + y(t) + Derivative(x(t), t) - exp(-t),0),Eq(-x(t) + 2*y(t) + Derivative(y(t), t) - 2*exp(-3*t),0)] ics = {x(0): 2, y(0): -1} dsolve(ode,func=[x(t),y(t)],ics=ics)