Internal
problem
ID
[21061]
Book
:
A
FIRST
COURSE
IN
DIFFERENTIAL
EQUATIONS
FOR
SCIENTISTS
AND
ENGINEERS.
By
Russell
Herman.
University
of
North
Carolina
Wilmington.
LibreText.
compiled
on
06/09/2025
Section
:
Chapter
6,
Linear
systems.
Problems
section
6.9
Problem
number
:
8.a
Date
solved
:
Thursday, October 02, 2025 at 07:01:52 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 2*x(t)-y(t)+exp(t), diff(y(t),t) = 3*x(t)-2*y(t)+t]; ic:=[x(0) = 1, y(0) = 2]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==2*x[t]-y[t]+Exp[t],D[y[t],t]==3*x[t]-2*y[t]+t}; ic={x[0]==1,y[0]==2}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*x(t) + y(t) - exp(t) + Derivative(x(t), t),0),Eq(-t - 3*x(t) + 2*y(t) + Derivative(y(t), t),0)] ics = {x(0): 1, y(0): 2} dsolve(ode,func=[x(t),y(t)],ics=ics)