Internal
problem
ID
[21094]
Book
:
Ordinary
Differential
Equations.
By
Wolfgang
Walter.
Graduate
texts
in
Mathematics.
Springer.
NY.
QA372.W224
1998
Section
:
Chapter
1.
First
order
equations:
Some
integrable
cases.
Excercises
IX
at
page
45
Problem
number
:
(b)
Date
solved
:
Thursday, October 02, 2025 at 07:08:08 PM
CAS
classification
:
[_rational]
ode:=x*y(x)^2-y(x)^3+(1-x*y(x)^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x*y[x]^2-y[x]^3)+(1-x*y[x]^2)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x)**2 + (-x*y(x)**2 + 1)*Derivative(y(x), x) - y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)