Internal
problem
ID
[21115]
Book
:
Ordinary
Differential
Equations.
By
Wolfgang
Walter.
Graduate
texts
in
Mathematics.
Springer.
NY.
QA372.W224
1998
Section
:
Chapter
IV.
Linear
Differential
Equations.
Excercise
VI
at
page
209
Problem
number
:
(b)
Date
solved
:
Thursday, October 02, 2025 at 07:08:35 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+5*y(x) = exp(x); ic:=[y(0) = 1, D(y)(0) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]-2*D[y[x],x]+5*y[x]==Exp[x]; ic={y[0]==1,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(5*y(x) - exp(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics)