Internal
problem
ID
[21117]
Book
:
Ordinary
Differential
Equations.
By
Wolfgang
Walter.
Graduate
texts
in
Mathematics.
Springer.
NY.
QA372.W224
1998
Section
:
Chapter
V.
Complex
Linear
Systems.
Excercise
VIII
at
page
221
Problem
number
:
(a)
Date
solved
:
Sunday, October 12, 2025 at 05:51:27 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(w__1(z),z) = w__2(z), diff(w__2(z),z) = a*w__1(z)/z^2]; dsolve(ode);
ode={D[w1[z],z]==w2[z],D[w2[z],z]==a*w1[z]/z^2}; ic={}; DSolve[{ode,ic},{w1[z],w2[z]},z,IncludeSingularSolutions->True]
from sympy import * z = symbols("z") a = symbols("a") w1 = Function("w1") w2 = Function("w2") ode=[Eq(-w2(z) + Derivative(w1(z), z),0),Eq(-a*w1(z)/z**2 + Derivative(w2(z), z),0)] ics = {} dsolve(ode,func=[w1(z),w2(z)],ics=ics)
ValueError : The function cannot be automatically detected for nan.