80.2.10 problem 13

Internal problem ID [21153]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 2. Theory of first order differential equations. Excercise 2.6 at page 37
Problem number : 13
Date solved : Thursday, October 02, 2025 at 07:11:11 PM
CAS classification : [_quadrature]

\begin{align*} x^{\prime }&=\arctan \left (x\right ) \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=diff(x(t),t) = arctan(x(t)); 
dsolve(ode,x(t), singsol=all);
 
\[ t -\int _{}^{x}\frac {1}{\arctan \left (\textit {\_a} \right )}d \textit {\_a} +c_1 = 0 \]
Mathematica. Time used: 0.244 (sec). Leaf size: 29
ode=D[x[t],t]==ArcTan[x[t]]; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{\arctan (K[1])}dK[1]\&\right ][t+c_1]\\ x(t)&\to 0 \end{align*}
Sympy. Time used: 0.125 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(-atan(x(t)) + Derivative(x(t), t),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ \int \limits ^{x{\left (t \right )}} \frac {1}{\operatorname {atan}{\left (y \right )}}\, dy = C_{1} + t \]