80.2.20 problem 27

Internal problem ID [21163]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 2. Theory of first order differential equations. Excercise 2.6 at page 37
Problem number : 27
Date solved : Thursday, October 02, 2025 at 07:15:06 PM
CAS classification : [_linear]

\begin{align*} x^{\prime }&=x t -t^{3} \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=a^{2} \\ \end{align*}
Maple. Time used: 0.011 (sec). Leaf size: 21
ode:=diff(x(t),t) = t*x(t)-t^3; 
ic:=[x(0) = a^2]; 
dsolve([ode,op(ic)],x(t), singsol=all);
 
\[ x = t^{2}+2+{\mathrm e}^{\frac {t^{2}}{2}} \left (a^{2}-2\right ) \]
Mathematica. Time used: 0.021 (sec). Leaf size: 25
ode=D[x[t],t]==t*x[t]-t^3; 
ic={x[0]==a^2}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \left (a^2-2\right ) e^{\frac {t^2}{2}}+t^2+2 \end{align*}
Sympy. Time used: 0.148 (sec). Leaf size: 19
from sympy import * 
t = symbols("t") 
a = symbols("a") 
x = Function("x") 
ode = Eq(t**3 - t*x(t) + Derivative(x(t), t),0) 
ics = {x(0): a**2} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = t^{2} + \left (a^{2} - 2\right ) e^{\frac {t^{2}}{2}} + 2 \]