80.5.7 problem B 5

Internal problem ID [21228]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 5. Second order equations. Excercise 5.9 at page 119
Problem number : B 5
Date solved : Thursday, October 02, 2025 at 07:27:06 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} x^{\prime \prime }-3 x^{\prime }+2 x&=0 \end{align*}

With initial conditions

\begin{align*} x \left (1\right )&=0 \\ x^{\prime }\left (1\right )&=1 \\ \end{align*}
Maple. Time used: 0.027 (sec). Leaf size: 17
ode:=diff(diff(x(t),t),t)-3*diff(x(t),t)+2*x(t) = 0; 
ic:=[x(1) = 0, D(x)(1) = 1]; 
dsolve([ode,op(ic)],x(t), singsol=all);
 
\[ x = -{\mathrm e}^{-1+t}+{\mathrm e}^{-2+2 t} \]
Mathematica. Time used: 0.01 (sec). Leaf size: 18
ode=D[x[t],{t,2}]-3*D[x[t],t]+2*x[t]==0; 
ic={x[1]==0,Derivative[1][x][1] ==1}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to e^{t-2} \left (e^t-e\right ) \end{align*}
Sympy. Time used: 0.102 (sec). Leaf size: 17
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(2*x(t) - 3*Derivative(x(t), t) + Derivative(x(t), (t, 2)),0) 
ics = {x(1): 0, Subs(Derivative(x(t), t), t, 1): 1} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = \left (\frac {e^{t}}{e^{2}} - e^{-1}\right ) e^{t} \]