Internal
problem
ID
[21271]
Book
:
A
Textbook
on
Ordinary
Differential
Equations
by
Shair
Ahmad
and
Antonio
Ambrosetti.
Second
edition.
ISBN
978-3-319-16407-6.
Springer
2015
Section
:
Chapter
5.
Second
order
equations.
Excercise
5.9
at
page
119
Problem
number
:
C
27
Date
solved
:
Thursday, October 02, 2025 at 07:27:32 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(x(t),t),t)-2*x(t) = 2*exp(t); ic:=[x(0) = 0, x(a) = 0]; dsolve([ode,op(ic)],x(t), singsol=all);
ode=D[x[t],{t,2}]-2*x[t]==2*Exp[t]; ic={x[0]==0,x[a] == 0}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") a = symbols("a") x = Function("x") ode = Eq(-2*x(t) - 2*exp(t) + Derivative(x(t), (t, 2)),0) ics = {x(0): 0, x(a): 0} dsolve(ode,func=x(t),ics=ics)