80.6.2 problem 2

Internal problem ID [21292]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 6. Higher order linear equations. Excercise 6.5 at page 133
Problem number : 2
Date solved : Thursday, October 02, 2025 at 07:27:53 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} x^{\prime \prime \prime }-x^{\prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 16
ode:=diff(diff(diff(x(t),t),t),t)-diff(x(t),t) = 0; 
dsolve(ode,x(t), singsol=all);
 
\[ x = c_1 +c_2 \,{\mathrm e}^{-t}+c_3 \,{\mathrm e}^{t} \]
Mathematica. Time used: 0.026 (sec). Leaf size: 23
ode=D[x[t],{t,3}]-D[x[t],t]==0; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to c_1 e^t-c_2 e^{-t}+c_3 \end{align*}
Sympy. Time used: 0.044 (sec). Leaf size: 14
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(-Derivative(x(t), t) + Derivative(x(t), (t, 3)),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = C_{1} + C_{2} e^{- t} + C_{3} e^{t} \]