Internal
problem
ID
[21397]
Book
:
A
Textbook
on
Ordinary
Differential
Equations
by
Shair
Ahmad
and
Antonio
Ambrosetti.
Second
edition.
ISBN
978-3-319-16407-6.
Springer
2015
Section
:
Chapter
11.
Laplace
transform.
Excercise
11.7
at
page
248
Problem
number
:
25
Date
solved
:
Thursday, October 02, 2025 at 07:30:47 PM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(x(t),t)+x(t) = t; ic:=[x(0) = -1]; dsolve([ode,op(ic)],x(t),method='laplace');
ode=D[x[t],t]+x[t]==t; ic={x[0] ==-1}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(-t + x(t) + Derivative(x(t), t),0) ics = {x(0): -1} dsolve(ode,func=x(t),ics=ics)